Control of arthropods and the animal/plant pathogens they vector by transgenesis and paratransgenesis – status and future directions

Alfred Handler USDA, Agricultural Research Service Center for Medical, Agricultural and Veterinary Entomology Gainesville, Florida

al.handler@ars.usda.gov

Transgenic approaches to arthropod control

- germ-line transformation of host arthropod genome
- types of control
 - improve biological control of pest species
 - make disease vectors refractory to pathogens
 - improve health and reproduction in beneficial insects
- methodology
 - transposon-mediated transformation
 - mass-rearing and field release sterile or autocidal transgenics for biocontrol
 - field release transgenics to replace disease vector population

Paratransgenic approaches to arthropod animal/plant pathogen control

- transformation of bacterial or viral symbiont of arthropod host
- types of control
 - express antibodies, lytic peptides, RNAi, etc
 - directly target pathogen for death
 - Plasmodium, Trypanosome, protozoa, bacteria, virus
 - target arthropod to inhibit vectorial capacity
- methodology
 - transform symbiont
 - infect host (feeding/inoculation)
 - continued infection by trans-ovarial, venereal, or coprophagy

Transposon vectors for germ-line transformation

- Class II transposable elements
- DNA-mediated cut and paste transpositions
- 1.3 to 3 kb elements
- 10-30 bp short inverted terminal repeats (ITR)
 - sometimes sub-terminal inverted repeats (IR)
 - generally 5' and 3' termini are not interchangeable
- internal transcriptional unit encodes transposase
 - acts at or near ITRs in trans

Transposon-based germline transformation

- transposase acts on transposon termini to 'cut' and 'paste'

Binary transposon-based germline transformation

- first developed for P vectors (Rubin and Spradling 1984)

- vector has deleted or disrupted transposase
- helper has transposase without one or both termini cannot integrate
- vector should be stable in absence of transposase

Transposon-based germline transformation

Transposon-based gene-transfer systems

<u>Family</u>	<u>Transposon</u>	<u>Host species</u>	Species transformed (incomplete)
P-element	P-element	D. melanogaster	D. melanogaster, D. simulans
hAT	hobo	D. melanogaster	D. melanogaster, D. virilis
	Hermes	M. domestica	D. melanogaster, Ae. aegypti S. calcitrans, T. castaneum C. quinquefasciatus, C. capitata
mariner/Tc1	Mos1	D. mauritiana	Drosophila, Ae. Aegypti, M. domestica, (chicken, zebrafish)
	Minos	D. hydei	D. melanogaster, C. capitata An. stephensi
TTAA	piggyBac	T. ni	D. melanogaster, C. capitata, A. suspensa B. dorsalis, B. mori, P. gossypiella, An. albimanus, T. castaneum, Ae. aegypti, C. homonivorax, A. ludens (mice, plasmodium)

Organisms transformed with piggyBac

Invertebrates

- >30 insects in 5 orders flies, moths, beetles, hymenoptera
 - mosquitoes: Anopheles, Aedes
 - tephritid fruit flies: medfly, oriental, mexfly, olive, caribfly, etc
 - screwworm, sheep blowfly, red flour beetle, pink bollworm, silkmoth
- Plasmodium falciparum
- Schistosoma mansoni

Vertebrates

- mice, embryonic stem cells
- pig and chicken cells
- human fibroblasts, T-lymphocytes, embryonic stem cells

Transgenesis for Biological Control of Arthropod Pests

Biocontrol

- for agricultural and human health pests
- requires artificial mass-rearing and field release

Improvement of SIT

- genetic marking for field detection
 - sperm-marking to detect mated females
- genetic sexing for male-only strains
- male sterility

New autocidal strains

- strains for conditional lethality
 - non-sex-specific death of progeny in field
 - female-specific lethality in rearing
 - for male-only release

Fluorescent proteins for genetic marking

(polyubiquitin-regulated DsRed/EGFP)

wild type transformed

Bright field

Ceratitis capitata
Mediterranean fruit fly

Anastrepha ludens - Mexican fruit fly

piggyBac transformation vector for testis-specific fluorescent protein expression using *A. suspensa* promoter

pB[PUbnlsEGFP/Asβ2tub:DsRed]

fluorescent testes

fluorescent sperm

sperm from female spermathecae

Female-specific lethality by tra alternative mRNA splicing

tra intron splice cassette

Males - stop codon not spliced - lethal effector truncated and non-functional Males survive!

Females - stop codon spliced out with intron - lethal effector produced Females die!

Conditional Lethality for Autocidal Biocontrol

- lethal genes can be used for organismal, tissue, or sex-specific death
- necessary to conditionally regulate lethal gene expression to maintain breeding strains
- Tetracycline suppression (tet-off) of gene expression
- Temperature-dependent regulation
 - heat shock protein (hsp) promoter
 - temperature-sensitive toxin genes
 - temperature-sensitive dominant lethal gene mutations

Tet-off conditional embryonic lethality

- transgene based, suppressible embryo-specific lethality system
- developed in Drosophila and implemented in medfly

Tet-off conditional embryonic lethality

- transgene based, suppressible embryo-specific lethality system
- developed in Drosophila and implemented in medfly

Tet-off conditional embryonic lethality

- transgene based, suppressible embryo-specific lethality system
- developed in Drosophila and implemented in medfly

Tet-off female-specific conditional embryonic lethality

- only female embryos die without tet

Tet-off conditional regulation of larval/pupal lethality

RIDL - release of insects with dominant lethality (Oxitec Ltd.) - medfly, mexfly, *Ae. aegypti*

TRE promoter linked to tTA has tTA driving its own expression

Accumulation of tTA results in larval/pupal lethality

- effective in mosquitoes adult vectors
- less effective for tephritids larval feeding

Tet-off conditional regulation of larval/pupal lethality

RIDL - release of insects with dominant lethality

Tetracycline inhibits tTA binding to the TRE blocking tTA accumulation

Dominant Temperature Sensitive Lethality for Biocontrol

- introduce dominant mutation that causes death in larvae/pupae at 29-30°C
- rear insects at 25°C or below and release homozygous males
- all heterozygous offspring die at elevated ambient temperature
- system useful for tropical and subtropical pests
- existing mutations include DTS-5 ($Pros~26^{\circ}$) and DTS-7 ($Pros~eta 2^{\circ}$)
 - proteasome 20S subunit mutations cloned from Drosophila

Dominant Temperature Sensitive Lethality for Biocontrol

- introduce dominant mutation that causes death in larvae/pupae at 30°C
- rear insects at 25°C or below and release homozygous males all heterozygous offspring die at elevated ambient temperature
- system useful for tropical and subtropical pests
- existing mutations include DTS-5 (*Pros 26*¹) and DTS-7 (*Pros \beta2*¹)
 - proteasome 20S subunit mutations cloned from Drosophila

Dominant temperature sensitive lethality using Drosophila DTS-5 mutation

(John Belote, Syracuse University)

- Medfly transformed with piggyBac/EGFP/DTS-5 vector
- 90-95% lethality in homozygotes (2 doses) at 30°C

type

Pupal lethality in *A. suspensa* homozygous for the mutant *AsProsβ2*¹ transgene

 $(n = 994 \text{ to } 1282 \text{ at } 29^{\circ} \text{ C})$

25° C 29° C

Major issues for development and release of transgenic insects

- transgene stability
 - strain integrity and ecological safety
- random integrations
 - mutations affecting strain fitness
 - position effects affecting transgene expression

Vector stabilization by terminus deletion

Vector stabilization by terminus deletion

- remobilize internal vector by jumpstarter mating or helper injection
- excision deletes 3' terminus loss of ECFP marker
- remaining DsRed marker/GOI + 5' end is stable cannot be remobilized!!

Vector targeting by recombinase-mediated cassette exchange (RMCE)

- use dual non-interacting heterospecific recombinase/integrase sites for double recombination

genomic target site

Vector targeting by recombinase-mediated cassette exchange (RMCE)

- use dual non-interacting heterospecific recombinase/integrase sites for double recombination

Vector targeting by recombinase-mediated cassette exchange (RMCE)

- use dual non-interacting heterospecific recombinase/integrase sites for double recombination

Transgenesis to control vectors of animal and plant disease

- strategies to control vector insects not amenable to mass-rearing and release
- transform insect vector of animal or plant disease to kill pathogen or interrupt its transmission
 - direct expression of interfering peptide to site of pathogen interaction
 - requires tissue-specific promoters
- eventual goal to replace existing vector population with 'innocuous' transgenics
 - requires some type of 'gene drive' system
 - Medea 'selfish gene' system is most promising

Transgenesis to target animal disease pathogens

Host species	Promoter	Transgene	Target	Pathogen
Ae. aegypti	Ae vitellogenin	Defensin A	fat body	Micrococcus luteus
				Enterobacter cloace
				P. gallinaceum
Ae. aegypti	Ae vitellogenin	Cecropin A	fat body	Enterobacter cloace
Ae. fluviatillis	Ag peritrophin	mphospholipase-2	midgut	P. gallinaceum
An. gambiae	Ae carboxypeptidase	Cecropin A	midgut	P. berghei (61% oocyst reduction)
An. stephensi	Ag carboxypeptidase	phospholipase-2	midgut	P. berghei (87% oocyst reduction)
An. stephensi	Ag carboxypeptidase	[SM1]4	midgut	P. berghei
An. stephensi	Ag peritrophin	phospholipase-2	midgut	P. berghei

Maternal effect 'Medea' selfish-gene drive system

(Chen et al. 2007, Science 316, 597)

- synthetic 'Medea (M) element contains 'toxin' and 'antidote'
- toxin is maternal microRNA to *Myd88* zygotic gene 5'UTR
- antidote is zygotic *Myd88* ORF lacking the 5'UTR
- Heterozygous M/+ females give maternal toxin to all oocytes
- only zygotes that are *M/M* or *M/*+ have antidote and survive
- +/+ non-*Medea* zygotes without antidote die
- gene drive system has transgene linked to *Medea*

Status, challenges and future directions for use of transgenesis to control arthropods and their pathogens

Status

Biocontrol:

- transgenic strains for SIT/autocidal biocontrol are well-developed
 - large-scale and/or field testing in progress or being planned
- NAPPO framework in place to test and release transgenic insects
- new vectors for transgene stabilization and targeting available

Anti-pathogenic:

- proof of concept with animal pathogens is promising
- transgenic mosquitoes blocking a human plasmodium not developed
- no reports of plant pathogens targeted
 - potential hosts such as glassy-winged sharpshooter and Asian citrus psyllid
 have not been transformed
- vector population replacement
 - Medea 'selfish gene' system only tested in Drosophila

Status, challenges and future directions for use of transgenesis to control arthropods and their pathogens

Challenges and Future directions

- not all pest insects amenable to transgenic methodology
 - new DNA delivery methods to expand species amenable to gene-transfer
- potential 'genetic breakdown' of transgene phenotype after mass rearing
 - test for transgene reversion/modifications; use of dual systems
- human parasite control awaits testing
 - expand testing; improve *P. falciparum/vivax* culture
- reliable 'gene drive' system not available
 - further testing of artificial Medea system
- risk issues for 'spread' transgenes not addressed
 - further large-scale testing and modeling

Paratransgenic approaches to arthropod animal/plant pathogen control

- transformation of bacterial or viral symbiont
 - to kill the pathogen
 - to inhibit vectorial capacity of host
- types of control
 - bacterial/viral expression of antibodies to disease vectors
 - viral-mediated RNAi to pathogen development
 - bacterial/yeast expression of lytic peptides to host or pathogens
 - yeast expression of anti-viral molecules

Paratransgenesis: transformed symbionts

Paratransgenic approaches to arthropod control

Host species	Symbiont	Transgene	Target	Pathogen
Tested				
Rhodnius prolixus	Rhodococcus rhodnii (bacteria)	Cecropin A	hindgut	Trypanosome cruzi
An. stephensi	E. coli	PLA2; [SM1]	midgut	P. berghei
Formosan subterranean termite	Kluyveromyces lactis (yeast)	lytic peptides hecate/ melittin	gut	protozoa

Paratransgenic approaches to arthropod pathogen control

Host species	Symbiont	Transgene	Target	Pathogen		
Proof of Concept						
Glossina morsitans (tstetse)	Sodalis (bacteria)	EGFP	midgut, hemolymph	African trypanosome		
An. stephensi	Asaia sp. (bacteria)	EGFP/DsRed	midgut, salivary gland	Plasmodium		
Ae. aegypti	Sindbis virus	EGFP	fat body, muscles, nerves	(host-specific)		
An. gambiae	AgDensovirus	EGFP	midgut, fat body and ovaries	Plasmodium		
An. gambiae	Sindbis virus	EGFP	fat body, muscles, nerves	Plasmodium		
Homalodisca coagulata (GWSS)	Alcaligenes xylosoxidans denitrificans (yeast)	DsRed	foregut	Xylella fastidiosa (Pierce's disease)		
Perkinsiella saccharicida (planthopper)	Candida-YLS (yeast like symbiont)	EGFP/ antibiotic- resistance	fat body	Fiji disease virus (FDV)		

Status, challenges and future directions for use of paratransgenesis to control animal and plant pathogens

Status

- paratransgenic systems should not be subject to <u>transgenic</u> insertional mutations (host fitness deficiencies), positions effects, and potential for horizontal transfer
- three paratransgenic systems using bacterial and yeast symbionts created and tested in-lab for pathogen disruption
- seven or more systems using bacteria, viral, and yeast symbionts tested for proof of concept showing symbiont transformation and vertical transmission
- potential use for RNAi strategies

Status, challenges and future directions for use of paratransgenesis to control animal and plant pathogens

Challenges

- need to put tested systems into field application (termite may be close)
- need to follow-through on successful proof-of-concept strategies
- efficient spread of symbiont throughout host population
- assuring symbiont host-specificity

Status, challenges and future directions for use of paratransgenesis to control animal and plant pathogens

Future Directions

- more follow-through on tested systems
- large-scale testing and assessment of symbiont replacement in natural host populations
- explore use of Wolbachia-induced cytoplasmic incompatibility (CI) to induce sterility
 - not paratransgenic
 - infected males induce sterility in non-infected females
 - release males infected with Wolbachia strain not present in field population
 - sexing is essential (unlike SIT; may require transgenic sexing strains)
 - infect insect vectors with *Wolbachia* that reduce lifespan (eg Dm-wMelPop) decreasing pathogen's ability to mature
 - use in paratransgenesis exciting prospect
 - will require artificial culture and transformation

Prospects and Possibilities for the Use of Transgenesis and Paratransgenesis

- a lot of exciting work on model systems and proof-of-principle
- number of strains and nearness to application further advanced for transgenic approaches – but only a few in field release
- paratransgenesis provides useful opportunities that may be of less social, ecological and regulatory concern
- more emphasis on risk analysis for both approaches